Analyse Angles at a Vertex

Select the Angle tool png and choose:

ANGLES AT A VERTEX

Click on a Primal or Dual vertex. The angle data is listed in the log.

png

The angle in red is the angle between Edge D and the Hub Normal.

The angle psi 'ψ', in yellow, is the angle between Edge D and the Hub Plane. This gives the bend angle for the end of a strut so that it may be bolted to a hub (as in a simple bolt-hub mechanism).


 HUB ANGLES AT VERTEX QE_ID: 1
                      UN_ID: 545
 Hub Label: ?

 Angles at vertex:
  <A,o,B =  68.8619764
         = 068° 51' 43.1150400"

  <B,o,C =  68.8619764
         = 068° 51' 43.1150400"

  <C,o,D =  68.8619764
         = 068° 51' 43.1150400"

  <D,o,E =  68.8619764
         = 068° 51' 43.1150400"

  <E,o,A =  68.8619764
         = 068° 51' 43.1150400"

  -- unique angles at vertex: 1

  Sum = 344.3098820
  Angular defect = 15.6901180

 Angles on hub plane:
  <A,o,B =  72.0000000
         = 072° 00' 0.0000000"

  <B,o,C =  72.0000000
         = 072° 00' 0.0000000"

  <C,o,D =  72.0000000
         = 072° 00' 0.0000000"

  <D,o,E =  72.0000000
         = 072° 00' 0.0000000"

  <E,o,A =  72.0000000
         = 072° 00' 0.0000000"

  Hub plane sum = 360.0000000

 Angles between hub normal | and edges:
  <|,o,A  =  105.8587372
          = 105° 51' 31.4539200"

  <|,o,B  =  105.8587372
          = 105° 51' 31.4539200"

  <|,o,C  =  105.8587372
          = 105° 51' 31.4539200"

  <|,o,D  =  105.8587372
          = 105° 51' 31.4539200"

  <|,o,E  =  105.8587372
          = 105° 51' 31.4539200"

 Angles between hub plane and edges:
  < ψ,A  =  15.8587372
          = 015° 51' 31.4539200"

  < ψ,B  =  15.8587372
          = 015° 51' 31.4539200"

  < ψ,C  =  15.8587372
          = 015° 51' 31.4539200"

  < ψ,D  =  15.8587372
          = 015° 51' 31.4539200"

  < ψ,E  =  15.8587372
          = 015° 51' 31.4539200"

<----------------------------------------------------->